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Motivation: Priority Sampling Problem

Problem Overview
Consider a set of items, labeled from 1 to n, with each item i
having an associated positive weight wi .

Specific Query

Given a subset Q of {1, 2, ..., n}, the query asks: ”What is the
total sum of weights in w corresponding to the elements in Q?”

n∑
i=1

wi · 1 [i ∈ Q]

Significance

This problem is fundamental in data analysis, where efficient and
accurate estimations of such sums are crucial, especially in large
datasets.
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Motivating Example: Website Traffic Analysis

Example:

Consider a scenario where we want to analyze the website traffic,
specifically counting the number of user count accessing the site
from a certain region.
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Motivating Example: Website Traffic Analysis

Example:

Consider a scenario where we aim to analyze website traffic,
specifically by counting the number of users accessing the site from
a certain region.

Analysis Goals

▶ Users are labeled as items 1 to n.

▶ Let wi represent the number of visits by user i .

▶ The goal is to compute the total number of visits to the
website from users in Washington D.C.

▶ Define Q as the set of users i who are located in Washington
D.C.

▶
∑n

i=1 wi · 1[i ∈ Q]
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Sampling

Objective

Because we are dealing with large-scale datasets, our aim is to store
only a limited number (k << n) of items from the data structure.

4 / 50



Sampling

Objective

Because we are dealing with large-scale datasets, our aim is to store
only a limited number (k << n) of items from the data structure.

Sampling Strategy

This approach assigns each item a sampling ratio of pi and
samples each item i with probability pi .

n∑
i=1

pi ≈ k
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Sampling

Objective

Because we are dealing with large-scale datasets, our aim is to store
only a limited number (k << n) of items from the data structure.

Sampling Strategy

This approach assigns each item a sampling ratio of pi and
samples each item i with probability pi .

n∑
i=1

pi ≈ k

To achieve more accurate sampling, items with higher weight
should be sampled with a higher probability.

sampling
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Formal Objectives for Effective Sampling

ŵi =

{
wi
pi

sampled with probability pi ,

0 otherwise
.
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Formal Objectives for Effective Sampling

ŵi =

{
wi
pi

sampled with probability pi ,

0 otherwise
.

Then, for any distribution of pi , the estimator

E

[
n∑

i=1

ŵi · 1[i ∈ Q]

]
=

n∑
i=1

wi · 1[i ∈ Q]
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Formal Objectives for Effective Sampling

ŵi =

{
wi
pi

sampled with probability pi ,

0 otherwise
.

Then, for any distribution of pi , the estimator

E

[
n∑

i=1

ŵi · 1[i ∈ Q]

]
=

n∑
i=1

wi · 1[i ∈ Q]

In our ideal case, to minimize the variance of the estimator when
sampling k items, if

∑
pi = k, we aim to minimize

min
p1,...,pn

Var

[
n∑

i=1

ŵi · 1[i ∈ Q]

]
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Formal Objectives for Effective Sampling

ŵi =

{
wi
pi

sampled with probability pi ,

0 otherwise
.

Then, for any distribution of pi , the estimator

E

[
n∑

i=1

ŵi · 1[i ∈ Q]

]
=

n∑
i=1

wi · 1[i ∈ Q]

In our ideal case, to minimize the variance of the estimator when
sampling k items, if

∑
pi = k, we aim to minimize

min
p1,...,pn

n∑
i=1

Var [ŵi · 1[i ∈ Q]]
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Formal Objectives for Effective Sampling

ŵi =

{
wi
pi

sampled with probability pi ,

0 otherwise
.

Then, for any distribution of pi , the estimator

E

[
n∑

i=1

ŵi · 1[i ∈ Q]

]
=

n∑
i=1

wi · 1[i ∈ Q]

In our ideal case, to minimize the variance of the estimator when
sampling k items, if

∑
pi = k, we aim to minimize

min
p1,...,pn

n∑
i=1

Var [ŵi · 1[i ∈ Q]]

Given that Q is unknown at the time of building the data
structure and we cannot speculate about the query, our goal is to
minimize

min
p1,...,pn

n∑
i=1

Var[ŵi ]
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Threshold Sampling: Sampling WOR

Sampling Criterion

Consider a hashing function h : {1, 2, . . . , n} → (0, 1].
An item i is sampled if:

hi
wi

< τ ⇒ i ∈ S

where hi is the hash value of item i , wi is its weight, and τ is a
predefined threshold.
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Threshold Sampling: Sampling WOR

Sampling Criterion

Consider a hashing function h : {1, 2, . . . , n} → (0, 1].
An item i is sampled if:

hi < wi · τ ⇒ i ∈ S

where hi is the hash value of item i , wi is its weight, and τ is a
predefined threshold.
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Threshold Sampling: Sampling WOR

Sampling Criterion

Consider a hashing function h : {1, 2, . . . , n} → (0, 1].
An item i is sampled if:

hi < wi · τ ⇒ i ∈ S

where hi is the hash value of item i , wi is its weight, and τ is a
predefined threshold.

Probability of Sampling an item

The probability of sampling an item in this context is determined
by the condition:

pi = min(1, τwi )
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Threshold Sampling: Sampling WOR

Sampling Criterion

Consider a hashing function h : {1, 2, . . . , n} → (0, 1].
An item i is sampled if:

hi
wi

< τ ⇒ i ∈ S

where hi is the hash value of item i , wi is its weight, and τ is a
predefined threshold.

Setting the Threshold

Setting the threshold τ as k∑
wi
, where k is a constant, results of

sampling k items in the expectation.

n∑
i=1

pi = k

15 / 50



Threshold Sampling: Answer Queries

Definition of Estimated Weight

We define

ŵi =

{
wi

min(1,wiτ)
i ∈ S

0 i /∈ S
.
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Threshold Sampling: Answer Queries

Definition of Estimated Weight

We define

ŵi =

{
wi

min(1,wiτ)
i ∈ S

0 i /∈ S
.

Query Answer

n∑
i=1

ŵi · 1 [i ∈ Q]
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Threshold Sampling: Variance Bound

Theorem (Variance Bound)

Var [ŵi ] ≤
wi

τ
= wi ·

W

k

Where W =
∑n

i=1 wi
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Threshold Sampling: Variance Bound

Theorem (Variance Bound)

Var [ŵi ] ≤
wi

τ
= wi ·

W

k

Where W =
∑n

i=1 wi

Estimator Variance Objective

n∑
i=1

Var[ŵi ] ≤
W 2

k
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Threshold Sampling: Variance Bound

Theorem (Variance Bound)

Var [ŵi ] ≤
wi

τ
= wi ·

W

k

Where W =
∑n

i=1 wi

Estimator Variance Objective

n∑
i=1

Var[ŵi ] ≤
W 2

k

This bound is optimal among all choices of probabilities.
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Threshold Sampling: Sampling WOR

Sampling Criterion

Consider a hashing function h : {1, 2, . . . , n} → (0, 1].
An item i is sampled if:

hi
wi

< τ ⇒ i ∈ S

where hi is the hash value of item i , wi is its weight, and τ is a
predefined threshold.

Main Disadvantage

There is no deterministic upper limit on the number of items that
are sampled.
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Priority Sampling: Fixed-Size Sampling WOR

Challenge

The key challenge in sampling without replacement lies in
consistently achieving a fixed number of samples
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Priority Sampling : Fixed-Size Sampling WOR

Literature
Significant contributions in this area include:

▶ Introduction of Priority Sampling [Duffield, Lund, and
Thorup, SIGMETRICS 2004]

▶ Upper Bound on Variance [Alon, Duffield, Lund, and Thorup,
PODS 2005]

▶ Tight Upper Bound on Variance [Szegedy, STOC 2006]

Tight Variance Bound

Var [ŵi ] ≤ wi ·
W

k − 1

Where W =
∑n

i=1 wi

23 / 50



Our Contribution

Figure: ”The DLT priority
sampling is essentially optimal”,
Szegedy, STOC 2006

Figure: Our Paper, SOSA 2024
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Priority Sampling

Sampling Criterion

Consider a hashing function h : {1, 2, . . . , n} → (0, 1].
define τ as (k + 1)th smallest hi

wi
.

An item i is sampled if:

hi
wi

< τ ⇒ i ∈ S

where hi is the hash value of item i , wi is its weight.

Key Difference from Threshold Sampling

Priority Sampling is similar to Threshold Sampling, but with a
crucial difference: the threshold τ is adaptively chosen as the
(k + 1)st smallest hi

wi
.
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Priority Sampling: Fixed-Size Sampling WOR

Sampling Criterion

Consider a hashing function h : {1, 2, . . . , n} → (0, 1].
define τ as (k + 1)th smallest hi

wi
.

An item i is sampled if:

hi
wi

< τ ⇒ i ∈ S

where hi is the hash value of item i , wi is its weight.

0 h5
w5

h4
w4

h7
w7

h1
w1

h3
w3

h6
w6

h2
w2

h2
w2

τ

Figure: Illustration of Selecting τ for k = 3 in a Set of n = 7 Elements
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Priority Sampling

Sampling Criterion

Consider a hashing function h : {1, 2, . . . , n} → (0, 1].
define τ as (k + 1)th smallest hi

wi
.

An item i is sampled if:

hi
wi

< τ ⇒ i ∈ S

where hi is the hash value of item i , wi is its weight.

0 h5
w5

h4
w4

h7
w7

h1
w1

h3
w3

h6
w6

h2
w2

h2
w2

τ

Sampled Set S

Figure: Illustration of the Sampling Process for Selected Elements
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Priority Sampling: Answer Queries

Definition of Estimated Weight

We define

ŵi =

{
wi

min(1,wiτ)
i ∈ S

0 i /∈ S
.
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Priority Sampling: Answer Queries

Definition of Estimated Weight

We define

ŵi =

{
wi

min(1,wiτ)
i ∈ S

0 i /∈ S
.

Fact (Expected Value)

E[ŵi ] = wi

Fact (Pairwise Uncorrelated)

E[ŵi · ŵj ] = wi · wj
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Priority Sampling: Answer Queries

Definition of Estimated Weight

We define

ŵi =

{
wi

min(1,wiτ)
i ∈ S

0 i /∈ S
.

Fact (Expected Value)

E[ŵi ] = wi

Fact (Pairwise Uncorrelated)

E[ŵi · ŵj ] = wi · wj

Query Answer

n∑
i=1

ŵi · 1 [i ∈ Q]
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Priority Sampling: Variance Bound

Theorem (Variance Bound)

Var [ŵi ] ≤ wi ·
W

k − 1

Where W =
∑n

i=1 wi

31 / 50



Priority Sampling: Variance Bound

Theorem (Variance Bound)

Var [ŵi ] ≤ wi ·
W

k − 1

Where W =
∑n

i=1 wi

Estimator Variance Objective

n∑
i=1

Var[ŵi ] ≤
W 2

k − 1
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Priority Sampling: Variance Bound Proof Structure

Definition
Define τi for each i as kst smallest

hj
wj

for j ∈ {1, 2, . . . , n} − {i}.
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Priority Sampling: Variance Bound Proof Structure

Definition
Define τi for each i as kst smallest

hj
wj

for j ∈ {1, 2, . . . , n} − {i}.

0 h5
w5

h4
w4

h7
w7

h1
w1

h3
w3

h6
w6

h2
w2

h2
w2

τ

Figure: Illustration of Selecting τ for k = 3 in a Set of n = 7 Elements
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Priority Sampling: Variance Bound Proof Structure

Definition
Define τi for each i as kst smallest

hj
wj

for j ∈ {1, 2, . . . , n} − {i}.

0 h5
w5

h7
w7

h1
w1

h3
w3

h6
w6

h2
w2

h2
w2

τ

τ4

Figure: Illustration of Selecting τ, τ4 for k = 3 in a Set of n = 7 Elements
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Priority Sampling: Variance Bound Proof Structure

Definition
Define τi for each i as kst smallest

hj
wj

for j ∈ {1, 2, . . . , n} − {i}.

0 h5
w5

h4
w4

h7
w7

h1
w1

h3
w3

h6
w6

h2
w2

h2
w2

τ

Figure: Illustration of Selecting τ for k = 3 in a Set of n = 7 Elements
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Priority Sampling: Variance Bound Proof Structure

Definition
Define τi for each i as kst smallest

hj
wj

for j ∈ {1, 2, . . . , n} − {i}.

0 h5
w5

h4
w4

h7
w7

h1
w1

h6
w6

h2
w2

h2
w2

τ

τ3

Figure: Illustration of Selecting τ, τ3 for k = 3 in a Set of n = 7 Elements
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Priority Sampling: Variance Bound Proof Structure

Definition
Define τi for each i as kst smallest

hj
wj

for j ∈ {1, 2, . . . , n} − {i}.

Lemma (Variance Bound of Estimated Weight)

Var [ŵi ] ≤ wi · E
[
1

τi

]
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Priority Sampling: Variance Bound Proof Structure

Definition
Define τi for each i as kst smallest

hj
wj

for j ∈ {1, 2, . . . , n} − {i}.

Lemma (Variance Bound of Estimated Weight)

Var [ŵi ] ≤ wi · E
[
1

τi

]

Lemma (Expected Inverse Threshold)

E
[
1

τi

]
≤ W

k − 1

Where W =
∑n

i=1 wi
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Priority Sampling: Proof

Lemma (Expected Inverse Threshold)

E
[
1

τi

]
≤ W

k − 1

Where W =
∑n

i=1 wi
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Priority Sampling: Proof

Lemma (Expected Inverse Threshold)

E
[
1

τi

]
≤ W

k − 1

Where W =
∑n

i=1 wi

Ŵ =
n∑

i=0

ŵi
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Priority Sampling: Proof

Lemma (Expected Inverse Threshold)

E
[
1

τi

]
≤ W

k − 1

Where W =
∑n

i=1 wi

Ŵ =
n∑

i=0

ŵi =
∑
i∈S

wi

min (1, τwi )
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Priority Sampling: Proof

Lemma (Expected Inverse Threshold)

E
[
1

τi

]
≤ W

k − 1

Where W =
∑n

i=1 wi

Ŵ =
n∑

i=0

ŵi =
∑
i∈S

wi

min (1, τwi )
=

∑
i∈S

max

(
wi ,

1

τ

)
.

43 / 50



Priority Sampling: Proof

Lemma (Expected Inverse Threshold)

E
[
1

τi

]
≤ W

k − 1

Where W =
∑n

i=1 wi

Ŵ =
n∑

i=0

ŵi =
∑
i∈S

wi

min (1, τwi )
=

∑
i∈S

max

(
wi ,

1

τ

)
.

⇒ Ŵ ≥
∑
i∈S

1

τ
=

k

τ
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Priority Sampling: Proof

Lemma (Expected Inverse Threshold)

E
[
1

τi

]
≤ W

k − 1

Where W =
∑n

i=1 wi

Ŵ =
n∑

i=0

ŵi =
∑
i∈S

wi

min (1, τwi )
=

∑
i∈S

max

(
wi ,

1

τ

)
.

⇒ Ŵ ≥
∑
i∈S

1

τ
=

k

τ

⇒ E[Ŵ ] ≥ k E
[
1

τ

]
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Priority Sampling: Proof

Lemma (Expected Inverse Threshold)

E
[
1

τi

]
≤ W

k − 1

Where W =
∑n

i=1 wi

Ŵ =
n∑

i=0

ŵi =
∑
i∈S

wi

min (1, τwi )
=

∑
i∈S

max

(
wi ,

1

τ

)
.

⇒ Ŵ ≥
∑
i∈S

1

τ
=

k

τ

⇒ E[Ŵ ] ≥ k E
[
1

τ

]
⇒ W ≥ k E

[
1

τ

]
⇒ E

[
1

τ

]
≤ W

k

46 / 50



Priority Sampling: Proof

Lemma (Expected Inverse Threshold)

E
[
1

τi

]
≤ W

k − 1

Where W =
∑n

i=1 wi

E
[
1

τ

]
≤ W

k

τ : (k + 1)st smallest
hj
wj

for j ∈ {1, 2, . . . , n}.

τi : k
st smallest

hj
wj

for j ∈ {1, 2, . . . , n} − {i}.
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Priority Sampling: Proof

Lemma (Expected Inverse Threshold)

E
[
1

τi

]
≤ W

k − 1

Where W =
∑n

i=1 wi

E
[
1

τ

]
≤ W

k

τ : (k + 1)st smallest
hj
wj

for j ∈ {1, 2, . . . , n}.

τi : k
st smallest

hj
wj

for j ∈ {1, 2, . . . , n} − {i}.

⇒ E
[
1

τi

]
≤ W − wi

k − 1
≤ W

k − 1
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Priority Sampling: Application

Inner Product Sketch
Our study demonstrates that straightforward proof enables
extending our method to inner product sketching. Our analysis
shows priority sampling outperforms the Johnson-Lindenstrauss
(JL) transform in reducing estimation error.

Reference Paper :

Title: ”Sampling Methods for Inner Product Sketching”
Authors: Majid Daliri, Juliana Freire, Christopher Musco, Aécio
Santos, Haoxiang Zhang

Figure: Experimental Results of JL vs Priority sampling
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Questions?

Any Questions?
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