Simple Analysis of Priority Sampling

New York University, Majid Daliri

January 9, 2024

Collaboration

This project was a joint effort by the following individuals:

Prof. Juliana Freire New York University

Aécio Santos New York University

Prof. Christopher Musco New York University

Haoxiang Zhang New York University

Motivation: Priority Sampling Problem

Problem Overview

Consider a set of items, labeled from 1 to n, with each item i having an associated **positive** weight w_i .

Specific Query

Given a subset \mathbf{Q} of $\{1, 2, ..., n\}$, the query asks: "What is the total sum of weights in \mathbf{w} corresponding to the elements in \mathbf{Q} ?"

$$\sum_{i=1}^n w_i \cdot \mathbb{1}\left[i \in Q\right]$$

Significance

This problem is fundamental in data analysis, where efficient and accurate estimations of such sums are crucial, especially in large datasets.

Motivating Example: Website Traffic Analysis

Example:

Consider a scenario where we want to analyze the website traffic, specifically counting the number of user count accessing the site from a certain region.

Motivating Example: Website Traffic Analysis

Example:

Consider a scenario where we aim to analyze website traffic, specifically by counting the number of users accessing the site from a certain region.

Analysis Goals

- Users are labeled as items 1 to n.
- Let w_i represent the number of visits by user i.
- ► The goal is to compute the total number of visits to the website from users in Washington D.C.
- ▶ Define Q as the set of users i who are located in Washington D.C.
- $\triangleright \sum_{i=1}^n w_i \cdot \mathbb{1}[i \in Q]$

Sampling

Objective

Because we are dealing with large-scale datasets, our aim is to store only a limited number (k << n) of items from the data structure.

Sampling

Objective

Because we are dealing with large-scale datasets, our aim is to store only a limited number (k << n) of items from the data structure.

Sampling Strategy

This approach assigns each item a sampling ratio of p_i and samples each item i with probability p_i .

$$\sum_{i=1}^n p_i \approx k$$

Sampling

Objective

Because we are dealing with large-scale datasets, our aim is to store only a limited number (k << n) of items from the data structure.

Sampling Strategy

This approach assigns each item a sampling ratio of p_i and samples each item i with probability p_i .

$$\sum_{i=1}^n p_i \approx k$$

To achieve more accurate sampling, items with higher weight should be sampled with a higher probability.

$$\hat{w}_i = egin{cases} rac{w_i}{p_i} & ext{sampled with probability } p_i, \ 0 & ext{otherwise} \end{cases}$$

$$\hat{w}_i = egin{cases} rac{w_i}{p_i} & ext{sampled with probability } p_i, \\ 0 & ext{otherwise} \end{cases}$$

Then, for any distribution of p_i , the estimator

$$\mathbb{E}\left[\sum_{i=1}^n \hat{w}_i \cdot \mathbb{1}[i \in Q]\right] = \sum_{i=1}^n w_i \cdot \mathbb{1}[i \in Q]$$

$$\hat{w}_i = egin{cases} rac{w_i}{p_i} & ext{sampled with probability } p_i, \ 0 & ext{otherwise} \end{cases}$$

Then, for any distribution of p_i , the estimator

$$\mathbb{E}\left[\sum_{i=1}^n \hat{w}_i \cdot \mathbb{1}[i \in Q]\right] = \sum_{i=1}^n w_i \cdot \mathbb{1}[i \in Q]$$

In our ideal case, to minimize the variance of the estimator when sampling k items, if $\sum p_i = k$, we aim to minimize

$$\min_{
ho_1,...,
ho_n} \mathsf{Var}\left[\sum_{i=1}^n \hat{w}_i \cdot \mathbb{1}[i \in Q]
ight]$$

$$\hat{w}_i = egin{cases} rac{w_i}{p_i} & ext{sampled with probability } p_i, \\ 0 & ext{otherwise} \end{cases}$$

Then, for any distribution of p_i , the estimator

$$\mathbb{E}\left[\sum_{i=1}^n \hat{w}_i \cdot \mathbb{1}[i \in Q]\right] = \sum_{i=1}^n w_i \cdot \mathbb{1}[i \in Q]$$

In our ideal case, to minimize the variance of the estimator when sampling k items, if $\sum p_i = k$, we aim to minimize

$$\min_{p_1,\ldots,p_n} \sum_{i=1}^n \mathsf{Var} \left[\hat{w}_i \cdot \mathbb{1}[i \in Q] \right]$$

$$\hat{w}_i = egin{cases} rac{w_i}{p_i} & ext{sampled with probability } p_i, \\ 0 & ext{otherwise} \end{cases}$$

Then, for any distribution of p_i , the estimator

$$\mathbb{E}\left[\sum_{i=1}^n \hat{w}_i \cdot \mathbb{1}[i \in Q]\right] = \sum_{i=1}^n w_i \cdot \mathbb{1}[i \in Q]$$

In our ideal case, to minimize the variance of the estimator when sampling k items, if $\sum p_i = k$, we aim to minimize

$$\min_{\rho_1,\ldots,\rho_n} \sum_{i=1}^n \mathsf{Var} \left[\hat{w}_i \cdot \mathbb{1}[i \in Q] \right]$$

Given that Q is unknown at the time of building the data structure and we cannot speculate about the query, our goal is to minimize

$$\min_{p_1,\dots,p_n} \sum_{i=1}^n \mathsf{Var}[\hat{w}_i]$$

Sampling Criterion

Consider a hashing function $h: \{1, 2, ..., n\} \rightarrow (0, 1]$. An item i is sampled if:

$$\frac{h_i}{w_i} < \tau \Rightarrow i \in \mathcal{S}$$

where h_i is the hash value of item i, w_i is its weight, and τ is a predefined threshold.

Sampling Criterion

Consider a hashing function $h: \{1, 2, ..., n\} \rightarrow (0, 1]$. An item i is sampled if:

$$h_i < w_i \cdot \tau \Rightarrow i \in \mathcal{S}$$

where h_i is the hash value of item i, w_i is its weight, and τ is a predefined threshold.

Sampling Criterion

Consider a hashing function $h: \{1, 2, ..., n\} \rightarrow (0, 1]$. An item i is sampled if:

$$h_i < w_i \cdot \tau \Rightarrow i \in \mathcal{S}$$

where h_i is the hash value of item i, w_i is its weight, and τ is a predefined threshold.

Probability of Sampling an item

The probability of sampling an item in this context is determined by the condition:

$$p_i = \min(1, \tau w_i)$$

Sampling Criterion

Consider a hashing function $h: \{1, 2, ..., n\} \rightarrow (0, 1]$.

An item *i* is sampled if:

$$\frac{h_i}{w_i} < \tau \Rightarrow i \in \mathcal{S}$$

where h_i is the hash value of item i, w_i is its weight, and τ is a predefined threshold.

Setting the Threshold

Setting the threshold τ as $\frac{k}{\sum w_i}$, where k is a constant, results of sampling k items in the **expectation**.

$$\sum_{i=1}^n p_i = k$$

Threshold Sampling: Answer Queries

Definition of Estimated Weight We define

$$\hat{w}_i = \begin{cases} \frac{w_i}{\min(1, w_i \tau)} & i \in \mathcal{S} \\ 0 & i \notin \mathcal{S} \end{cases}.$$

Threshold Sampling: Answer Queries

Definition of Estimated Weight

We define

$$\hat{w}_i = \begin{cases} \frac{w_i}{\min(1, w_i \tau)} & i \in \mathcal{S} \\ 0 & i \notin \mathcal{S} \end{cases}.$$

Query Answer

$$\sum_{i=1}^n \hat{w}_i \cdot \mathbb{1}\left[i \in Q\right]$$

Threshold Sampling: Variance Bound

Theorem (Variance Bound)

$$\operatorname{Var}\left[\hat{w}_{i}\right] \leq \frac{w_{i}}{\tau} = w_{i} \cdot \frac{W}{k}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

Threshold Sampling: Variance Bound

Theorem (Variance Bound)

$$\operatorname{Var}\left[\hat{w}_{i}\right] \leq \frac{w_{i}}{\tau} = w_{i} \cdot \frac{W}{k}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

Estimator Variance Objective

$$\sum_{i=1}^n \mathsf{Var}[\hat{w}_i] \le \frac{W^2}{k}$$

Threshold Sampling: Variance Bound

Theorem (Variance Bound)

$$\operatorname{Var}\left[\hat{w}_{i}\right] \leq \frac{w_{i}}{\tau} = w_{i} \cdot \frac{W}{k}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

Estimator Variance Objective

$$\sum_{i=1}^n \mathsf{Var}[\hat{w}_i] \le \frac{W^2}{k}$$

This bound is optimal among all choices of probabilities.

Sampling Criterion

Consider a hashing function $h: \{1, 2, ..., n\} \rightarrow (0, 1]$. An item i is sampled if:

$$\frac{h_i}{w_i} < \tau \Rightarrow i \in \mathcal{S}$$

where h_i is the hash value of item i, w_i is its weight, and τ is a predefined threshold.

Main Disadvantage

There is no **deterministic** upper limit on the number of items that are sampled.

Priority Sampling: Fixed-Size Sampling WOR

Challenge

The key challenge in sampling without replacement lies in consistently achieving a fixed number of samples

Priority Sampling: Fixed-Size Sampling WOR

Literature

Significant contributions in this area include:

- Introduction of Priority Sampling [Duffield, Lund, and Thorup, SIGMETRICS 2004]
- ► Upper Bound on Variance [Alon, Duffield, Lund, and Thorup, PODS 2005]
- ► Tight Upper Bound on Variance [Szegedy, STOC 2006]

Tight Variance Bound

$$\operatorname{Var}\left[\hat{w}_i\right] \leq w_i \cdot \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

Our Contribution

Figure: "The DLT priority sampling is essentially optimal", Szegedy, STOC 2006

Figure: Our Paper, SOSA 2024

Priority Sampling

Sampling Criterion

Consider a hashing function $h: \{1, 2, ..., n\} \rightarrow (0, 1]$. define τ as $(k+1)^{\text{th}}$ smallest $\frac{h_i}{w_i}$. An item i is sampled if:

$$\frac{h_i}{w_i} < \tau \Rightarrow i \in \mathcal{S}$$

where h_i is the hash value of item i, w_i is its weight.

Key Difference from Threshold Sampling

Priority Sampling is similar to Threshold Sampling, but with a crucial difference: the threshold τ is adaptively chosen as the $(k+1)^{\rm st}$ smallest $\frac{h_i}{w_i}$.

Priority Sampling: Fixed-Size Sampling WOR

Sampling Criterion

Consider a hashing function $h: \{1, 2, ..., n\} \rightarrow (0, 1]$. define τ as $(k+1)^{\text{th}}$ smallest $\frac{h_i}{w_i}$. An item i is sampled if:

$$\frac{h_i}{w_i} < \tau \Rightarrow i \in \mathcal{S}$$

where h_i is the hash value of item i, w_i is its weight.

Figure: Illustration of Selecting τ for k=3 in a Set of n=7 Elements

Priority Sampling

Sampling Criterion

Consider a hashing function $h:\{1,2,\ldots,n\}\to (0,1]$. define τ as $(k+1)^{\text{th}}$ smallest $\frac{h_i}{w_i}$. An item i is sampled if:

$$\frac{h_i}{w_i} < \tau \Rightarrow i \in \mathcal{S}$$

where h_i is the hash value of item i, w_i is its weight.

Figure: Illustration of the Sampling Process for Selected Elements

Priority Sampling: Answer Queries

Definition of Estimated Weight We define

$$\hat{w}_i = \begin{cases} \frac{w_i}{\min(1, w_i \tau)} & i \in \mathcal{S} \\ 0 & i \notin \mathcal{S} \end{cases}.$$

Priority Sampling: Answer Queries

Definition of Estimated Weight

We define

$$\hat{w}_i = \begin{cases} \frac{w_i}{\min(1, w_i \tau)} & i \in \mathcal{S} \\ 0 & i \notin \mathcal{S} \end{cases}.$$

Fact (Expected Value)

Fact (Pairwise Uncorrelated)

$$\mathbb{E}[\hat{w}_i] = w_i$$

$$\mathbb{E}[\hat{w}_i \cdot \hat{w}_j] = w_i \cdot w_j$$

Priority Sampling: Answer Queries

Definition of Estimated Weight

We define

$$\hat{w}_i = \begin{cases} \frac{w_i}{\min(1, w_i \tau)} & i \in \mathcal{S} \\ 0 & i \notin \mathcal{S} \end{cases}.$$

Fact (Expected Value)

Fact (Pairwise Uncorrelated)

$$\mathbb{E}[\hat{w}_i] = w_i$$

$$\mathbb{E}[\hat{w}_i \cdot \hat{w}_j] = w_i \cdot w_j$$

Query Answer

$$\sum_{i=1}^{n} \hat{w}_i \cdot \mathbb{1}\left[i \in Q\right]$$

Priority Sampling: Variance Bound

Theorem (Variance Bound)

$$\operatorname{Var}\left[\hat{w}_{i}\right] \leq w_{i} \cdot \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

Priority Sampling: Variance Bound

Theorem (Variance Bound)

$$\operatorname{Var}\left[\hat{w}_{i}\right] \leq w_{i} \cdot \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

Estimator Variance Objective

$$\sum_{i=1}^n \mathsf{Var}[\hat{w}_i] \le \frac{W^2}{k-1}$$

Priority Sampling: Variance Bound Proof Structure

Definition

Define τ_i for each i as k^{st} smallest $\frac{h_j}{w_i}$ for $j \in \{1, 2, \dots, n\} - \{i\}$.

Priority Sampling: Variance Bound Proof Structure

Definition

Define τ_i for each i as k^{st} smallest $\frac{h_j}{w_i}$ for $j \in \{1, 2, \dots, n\} - \{i\}$.

Figure: Illustration of Selecting τ for k=3 in a Set of n=7 Elements

Definition

Define τ_i for each i as k^{st} smallest $\frac{h_j}{w_i}$ for $j \in \{1, 2, ..., n\} - \{i\}$.

Figure: Illustration of Selecting τ, τ_4 for k = 3 in a Set of n = 7 Elements

Definition

Define τ_i for each i as k^{st} smallest $\frac{h_j}{w_i}$ for $j \in \{1, 2, \dots, n\} - \{i\}$.

Figure: Illustration of Selecting τ for k=3 in a Set of n=7 Elements

Definition

Define τ_i for each i as k^{st} smallest $\frac{h_j}{w_i}$ for $j \in \{1, 2, ..., n\} - \{i\}$.

Figure: Illustration of Selecting τ, τ_3 for k=3 in a Set of n=7 Elements

Definition

Define τ_i for each i as k^{st} smallest $\frac{h_j}{w_j}$ for $j \in \{1, 2, \dots, n\} - \{i\}$.

Lemma (Variance Bound of Estimated Weight)

$$\operatorname{\mathsf{Var}}\left[\hat{w}_i\right] \leq w_i \cdot \mathbb{E}\left[rac{1}{ au_i}
ight]$$

Definition

Define τ_i for each i as k^{st} smallest $\frac{h_j}{w_j}$ for $j \in \{1, 2, \dots, n\} - \{i\}$.

Lemma (Variance Bound of Estimated Weight)

$$\operatorname{\mathsf{Var}}\left[\hat{w}_i\right] \leq w_i \cdot \mathbb{E}\left[rac{1}{ au_i}
ight]$$

$$\mathbb{E}\left[\frac{1}{\tau_i}\right] \leq \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

$$\mathbb{E}\left[\frac{1}{\tau_i}\right] \leq \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

$$\mathbb{E}\left[\frac{1}{\tau_i}\right] \leq \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

$$\hat{W} = \sum_{i=0}^{n} \hat{w}_i$$

$$\mathbb{E}\left[\frac{1}{\tau_i}\right] \leq \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

$$\hat{W} = \sum_{i=0}^{n} \hat{w}_i = \sum_{i \in S} \frac{w_i}{\min(1, \tau w_i)}$$

$$\mathbb{E}\left[\frac{1}{\tau_i}\right] \leq \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

$$\hat{W} = \sum_{i=0}^{n} \hat{w}_i = \sum_{i \in S} \frac{w_i}{\min(1, \tau w_i)} = \sum_{i \in S} \max\left(w_i, \frac{1}{\tau}\right).$$

$$\mathbb{E}\left[\frac{1}{\tau_i}\right] \leq \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

$$\hat{W} = \sum_{i=0}^{n} \hat{w}_{i} = \sum_{i \in S} \frac{w_{i}}{\min(1, \tau w_{i})} = \sum_{i \in S} \max\left(w_{i}, \frac{1}{\tau}\right).$$

$$\Rightarrow \hat{W} \ge \sum_{i \in S} \frac{1}{\tau} = \frac{k}{\tau}$$

$$\mathbb{E}\left[\frac{1}{\tau_i}\right] \leq \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

$$\hat{W} = \sum_{i=0}^{n} \hat{w}_{i} = \sum_{i \in S} \frac{w_{i}}{\min(1, \tau w_{i})} = \sum_{i \in S} \max\left(w_{i}, \frac{1}{\tau}\right).$$

$$\Rightarrow \hat{W} \ge \sum_{i \in S} \frac{1}{\tau} = \frac{k}{\tau}$$

$$\Rightarrow \mathbb{E}[\hat{W}] \ge k \, \mathbb{E}\left[\frac{1}{\tau}\right]$$

$$\mathbb{E}\left[\frac{1}{\tau_i}\right] \leq \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

$$\begin{split} \hat{W} &= \sum_{i=0}^{n} \hat{w}_{i} = \sum_{i \in S} \frac{w_{i}}{\min(1, \tau w_{i})} = \sum_{i \in S} \max\left(w_{i}, \frac{1}{\tau}\right). \\ &\Rightarrow \hat{W} \geq \sum_{i \in S} \frac{1}{\tau} = \frac{k}{\tau} \\ &\Rightarrow \mathbb{E}[\hat{W}] \geq k \, \mathbb{E}\left[\frac{1}{\tau}\right] \\ &\Rightarrow W \geq k \, \mathbb{E}\left[\frac{1}{\tau}\right] \Rightarrow \mathbb{E}\left[\frac{1}{\tau}\right] \leq \frac{W}{k} \end{split}$$

$$\mathbb{E}\left[\frac{1}{\tau_i}\right] \leq \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

$$\mathbb{E}\left[\frac{1}{\tau}\right] \leq \frac{W}{k}$$

$$au$$
: $(k+1)^{\operatorname{st}}$ smallest $\frac{h_j}{w_j}$ for $j \in \{1,2,\ldots,n\}$.

$$au_i$$
: $k^{ ext{st}}$ smallest $rac{h_j}{w_j}$ for $j \in \{1, 2, \dots, n\} - \{i\}$.

$$\mathbb{E}\left[\frac{1}{\tau_i}\right] \leq \frac{W}{k-1}$$

Where
$$W = \sum_{i=1}^{n} w_i$$

$$\mathbb{E}\left[\frac{1}{\tau}\right] \leq \frac{W}{k}$$

$$au$$
: $(k+1)^{\operatorname{st}}$ smallest $\frac{h_j}{w_j}$ for $j \in \{1,2,\ldots,n\}$.

$$au_i$$
: k^{st} smallest $\frac{h_j}{w_i}$ for $j \in \{1, 2, \dots, n\} - \{i\}$.

$$\Rightarrow \mathbb{E}\left[\frac{1}{ au_i}\right] \leq \frac{W-w_i}{k-1} \leq \frac{W}{k-1}$$

Priority Sampling: Application

Inner Product Sketch

Our study demonstrates that straightforward proof enables extending our method to inner product sketching. Our analysis shows priority sampling outperforms the Johnson-Lindenstrauss (JL) transform in reducing estimation error.

Reference Paper:

Title: "Sampling Methods for Inner Product Sketching" **Authors:** Majid Daliri, Juliana Freire, Christopher Musco, Aécio Santos, Haoxiang Zhang

Figure: Experimental Results of JL vs Priority sampling

Questions?

Any Questions?