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Inner Products and Sketches MinHash Algorithm Applications
= Inner products are used in many applications, e.g., computing document similarity, evaluate * MinHash Sampling: Weighted MinHash sketches enable efficient estimation of inner products for numerous applica-
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, , o , 2. Select the index with min h(3); documents, and (3) estimating statistics (e.g. sum, covariance and correlation) of columns gener-
= For large vectors, inner product computation can be prohibitively expensive: O(n) 3. Repeat m times with different hashing functions h ated after a join without materializing table joins.
= Sketching methods have been proposed to address this challenge: = Store selected values ali] and bli] in Ha, Hj, o
; Data lake with many Augmented table
= Estimate the inner product as: andidate tables after a left join
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Linear Sketching for Inner Products [Arriaga and Vempala, 2006] Let e, 0 € (0,1) be accuracy \ KX K, Y X,
and failure probability parameters respectively and let m = O(log(1/6)/€?). Let IT € R™*" be a I|
random matrix with each entry set independently to ++/1/m or —y/1/m with equal probability. 3 —_— — — '
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where ||x|| denotes the standard Euclidean norm.
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Lete, 6 € (0,1) be accuracy and failure probability parameters and let m = O(log(1/6)/€?). There Weighted Minhash Algorithm $0.04- 2 0.08- 015
is an algorithm & based on Weighted MinHash sampling that produces size-m sketches, along | | | | | N 200 2 0.05- \\»\‘K £ 010- A
with an estimation procedure F, such that for any a, b € R", with probability at least 1 — §, " We propose a Weighted MinHash (WMH) algorithm that samples entries with probability 3 % 003 Boos| o L
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Above, T = {i : a[i] # 0and b[i] # 0} is the intersection of a’s and b’s supports. a7 and b7 a—a/|al b= b/|b] oswage olze sot°rage olze Storage Size
denote a and b restricted to indices in 7. 7 g o . X (@) 1% overlap () 10% overlap () 50% overlap
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— T2 B2 Figure 2. Across all three plots, the Weighted MinHash method clearly outperforms or matches the accuracy of
> i max(alj]*, b[j}?) competing approaches. The anticipated substantial performance gap between JL and Weighted MinHash is
particularly evident when the overlap is minimal.

Low Overlap and Data Sparsity: Why do we care?
3. Estimate the inner product by computing:

Error-bound improvement hinges on data sparsity, a common trait in practice. The provided

Image demonstrates how exploiting this sparsity significantly reduces errors. (a,b) ~ [|all[[b] (8, b) Summary
c ﬁ ? Table 1. Our bounds generalize existing minwise hashing bounds for binary vectors to general vectors.
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