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Cache-conscious Data Placement (CDP)

» CDP is a classical problem in cache management introduced by
Calder et al in ASPLOS 1998
» Consider a memory system consisting of
» Main memory: huge but slow
» Cache: small but fast
» When a program wants to access an object o:
» If o is in the cache, the access is successful
» Otherwise, we have a cache miss and o has to be copied to the
cache (possibly by evicting another item)
» Given a sequence X of accesses, our goal is to minimize cache misses
over ¥
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Details of CDP

> We have n objects (data items) O = {01,09,...,0,} and a
sequence ¥ € OV of accesses to these items

» The cache consists of k lines and is initially empty

» Each line can hold up to ¢ data items at a time

» ¢ =1 in this talk, but our algorithm works for any ¢

» Each item o; has a dedicated line f(o;) in the cache and is always
copied to this line. We call f a placement map

» The goal is to find an optimal placement map f* that minimizes the
number of cache misses

» We analyze the runtime based on n and N and assume that ¢ and k
are small constants
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Hardness of CDP

Theorem (Petrank and Rawitz, POPL 2002)

For a cache with more than two lines, CDP is not only NP-hard, but also
hard to approximate within any non-trivial factor O(N'~¢) unless P=NP

» This is a very strong hardness result and it holds for the simple
cache structure in CDP

» All following works are heuristics with no guarantees
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Our Contribution

» The first positive theoretical results for CDP
> based on sparsity of access graphs in real-world instances
» A linear-time (1 + €)-approximation of the optimal number of cache
misses assuming access graph of a specific degree d. is sparse
> Sparser instances lead to better approximations
» Stronger hardness results
» Both approximation and parameterization (sparsity) are needed at
the same time
> Not covered in the talk (Please see the paper)
» Experimental Results
» Not practical
» Only applicable to small caches with a handful of lines
» Due to exponential dependence on k
» On these small caches, our approach beats the heuristics in 84-88%
of the cases
> Not covered in the talk (Please see the paper)
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Higher-order Access Hypergraphs

» Basic Idea: If we are accessing 0; and the previous access to o; was
far in the past, then it is very likely that the current access is a miss.

» Formalization: If this is the first access to o; or we have seen at
least d distinct data items since the last access to o;, then we
assume a cache miss.

Y= <01702701704305303703701702>

d=3

e'lééeﬁ = 3 €3 = <01702301>
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Approximation Theorem

Theorem

For any € > 0, by applying the approach above using the sparsified access
hypergraph G4, of order d. := [t - k + LE7, we obtain a

(1 + €)—approximation of the optimal number of cache misses in a
direct-mapped cache, i.e. Misses,(f,%) < (1 + €) - Misses;,(f*, X).
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» A placement map is basically a coloring of our hypergraph with &
colors

» An edge corresponds to a cache miss if the color assigned to its
endpoints is reused in its middle, as well.

» NP-hard Problem: Find a coloring that minimizes missed edges.
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Treewidth-based Dynamic Programming

by
{01, 03,04}
by | {01,025} | | {03, 04,06} | b3
by | {04, 05,06} | | {04, 06, 07} | bs

» We assume our sparsified access graphs have small treewidth
» In reality, they do [Chatterjee et al, POPL 2019]

» Do a linear-time bottom-up dynamic programming as if you are
coloring a tree
dp[b;, partial coloring ] =

minimum number of missed edges in the subtree of b;

if we color the vertices in b; according to ¢



Conclusion

» CDP is really hard, even when the sequence of accesses is given
apriori

» It is not as hard as previously thought since real-world instances are
sparse

> The sparsity (tree-likeness) can be exploited to obtain
(1 + €)-approximations for any € > 0

> CDP requires both approximation and parameterization (by the
treewidth of access graphs) to become tractable

» We provided the first positive theoretical result for CDP but there is
still a long way until it becomes practical

» The current algorithm can be used for limit studies and comparison
of heuristics



