
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Efficient Approximations for
Cache-Conscious Data Placement

Ali Ahmadi1 Majid Daliri2 Amir Goharshady3 Andreas Pavlogiannis4

1Sharif University of Technology, Tehran, Iran
2University of Tehran, Tehran, Iran

3Hong Kong University of Science and Technology, Hong Kong, China
4Aarhus University, Aarhus, Denmark

PLDI 2022



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Cache-conscious Data Placement (CDP)

▶ CDP is a classical problem in cache management introduced by
Calder et al in ASPLOS 1998

▶ Consider a memory system consisting of
▶ Main memory: huge but slow
▶ Cache: small but fast

▶ When a program wants to access an object o:
▶ If o is in the cache, the access is successful
▶ Otherwise, we have a cache miss and o has to be copied to the

cache (possibly by evicting another item)
▶ Given a sequence Σ of accesses, our goal is to minimize cache misses

over Σ
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Details of CDP

▶ We have n objects (data items) O = {o1, o2, . . . , on} and a
sequence Σ ∈ ON of accesses to these items

▶ The cache consists of k lines and is initially empty
▶ Each line can hold up to t data items at a time

▶ t = 1 in this talk, but our algorithm works for any t

▶ Each item oi has a dedicated line f(oi) in the cache and is always
copied to this line. We call f a placement map

▶ The goal is to find an optimal placement map f∗ that minimizes the
number of cache misses

▶ We analyze the runtime based on n and N and assume that t and k
are small constants



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Details of CDP

▶ We have n objects (data items) O = {o1, o2, . . . , on} and a
sequence Σ ∈ ON of accesses to these items

▶ The cache consists of k lines and is initially empty

▶ Each line can hold up to t data items at a time
▶ t = 1 in this talk, but our algorithm works for any t

▶ Each item oi has a dedicated line f(oi) in the cache and is always
copied to this line. We call f a placement map

▶ The goal is to find an optimal placement map f∗ that minimizes the
number of cache misses

▶ We analyze the runtime based on n and N and assume that t and k
are small constants



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Details of CDP

▶ We have n objects (data items) O = {o1, o2, . . . , on} and a
sequence Σ ∈ ON of accesses to these items

▶ The cache consists of k lines and is initially empty
▶ Each line can hold up to t data items at a time

▶ t = 1 in this talk, but our algorithm works for any t

▶ Each item oi has a dedicated line f(oi) in the cache and is always
copied to this line. We call f a placement map

▶ The goal is to find an optimal placement map f∗ that minimizes the
number of cache misses

▶ We analyze the runtime based on n and N and assume that t and k
are small constants



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Details of CDP

▶ We have n objects (data items) O = {o1, o2, . . . , on} and a
sequence Σ ∈ ON of accesses to these items

▶ The cache consists of k lines and is initially empty
▶ Each line can hold up to t data items at a time

▶ t = 1 in this talk, but our algorithm works for any t

▶ Each item oi has a dedicated line f(oi) in the cache and is always
copied to this line. We call f a placement map

▶ The goal is to find an optimal placement map f∗ that minimizes the
number of cache misses

▶ We analyze the runtime based on n and N and assume that t and k
are small constants



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Details of CDP

▶ We have n objects (data items) O = {o1, o2, . . . , on} and a
sequence Σ ∈ ON of accesses to these items

▶ The cache consists of k lines and is initially empty
▶ Each line can hold up to t data items at a time

▶ t = 1 in this talk, but our algorithm works for any t

▶ Each item oi has a dedicated line f(oi) in the cache and is always
copied to this line. We call f a placement map

▶ The goal is to find an optimal placement map f∗ that minimizes the
number of cache misses

▶ We analyze the runtime based on n and N and assume that t and k
are small constants



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Details of CDP

▶ We have n objects (data items) O = {o1, o2, . . . , on} and a
sequence Σ ∈ ON of accesses to these items

▶ The cache consists of k lines and is initially empty
▶ Each line can hold up to t data items at a time

▶ t = 1 in this talk, but our algorithm works for any t

▶ Each item oi has a dedicated line f(oi) in the cache and is always
copied to this line. We call f a placement map

▶ The goal is to find an optimal placement map f∗ that minimizes the
number of cache misses

▶ We analyze the runtime based on n and N and assume that t and k
are small constants



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hardness of CDP

Theorem (Petrank and Rawitz, POPL 2002)
For a cache with more than two lines, CDP is not only NP-hard, but also
hard to approximate within any non-trivial factor O(N1−ϵ) unless P=NP

▶ This is a very strong hardness result and it holds for the simple
cache structure in CDP

▶ All following works are heuristics with no guarantees
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Our Contribution

▶ The first positive theoretical results for CDP
▶ based on sparsity of access graphs in real-world instances

▶ A linear-time (1 + ϵ)-approximation of the optimal number of cache
misses assuming access graph of a specific degree dϵ is sparse
▶ Sparser instances lead to better approximations

▶ Stronger hardness results
▶ Both approximation and parameterization (sparsity) are needed at

the same time
▶ Not covered in the talk (Please see the paper)

▶ Experimental Results
▶ Not practical

▶ Only applicable to small caches with a handful of lines
▶ Due to exponential dependence on k

▶ On these small caches, our approach beats the heuristics in 84-88%
of the cases

▶ Not covered in the talk (Please see the paper)
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Access Graphs

Σ = ⟨o1, o2, o1, o4, o5, o3, o3, o1, o2⟩
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Higher-order Access Hypergraphs
▶ Basic Idea: If we are accessing oi and the previous access to oi was

far in the past, then it is very likely that the current access is a miss.

▶ Formalization: If this is the first access to oi or we have seen at
least d distinct data items since the last access to oi, then we
assume a cache miss.

Σ = ⟨o1, o2, o1, o4, o5, o3, o3, o1, o2⟩

d = 3

e1 = ⟨o1⟩ e2 = ⟨o1, o2⟩ e3 = ⟨o1, o2, o1⟩
e4 = ⟨o2, o1, o4⟩ e5 = ⟨o1, o4, o5⟩ e6 = ⟨o4, o5, o3⟩

e7 = ⟨o3, o3⟩ e8 = ⟨o5, o3, o3, o1⟩ e9 = ⟨o3, o1, o2⟩



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Higher-order Access Hypergraphs
▶ Basic Idea: If we are accessing oi and the previous access to oi was

far in the past, then it is very likely that the current access is a miss.
▶ Formalization: If this is the first access to oi or we have seen at

least d distinct data items since the last access to oi, then we
assume a cache miss.

Σ = ⟨o1, o2, o1, o4, o5, o3, o3, o1, o2⟩

d = 3

e1 = ⟨o1⟩ e2 = ⟨o1, o2⟩ e3 = ⟨o1, o2, o1⟩
e4 = ⟨o2, o1, o4⟩ e5 = ⟨o1, o4, o5⟩ e6 = ⟨o4, o5, o3⟩

e7 = ⟨o3, o3⟩ e8 = ⟨o5, o3, o3, o1⟩ e9 = ⟨o3, o1, o2⟩



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Higher-order Access Hypergraphs
▶ Basic Idea: If we are accessing oi and the previous access to oi was

far in the past, then it is very likely that the current access is a miss.
▶ Formalization: If this is the first access to oi or we have seen at

least d distinct data items since the last access to oi, then we
assume a cache miss.

Σ = ⟨o1, o2, o1, o4, o5, o3, o3, o1, o2⟩

d = 3

e1 = ⟨o1⟩ e2 = ⟨o1, o2⟩ e3 = ⟨o1, o2, o1⟩
e4 = ⟨o2, o1, o4⟩ e5 = ⟨o1, o4, o5⟩ e6 = ⟨o4, o5, o3⟩

e7 = ⟨o3, o3⟩ e8 = ⟨o5, o3, o3, o1⟩ e9 = ⟨o3, o1, o2⟩



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Higher-order Access Hypergraphs
▶ Basic Idea: If we are accessing oi and the previous access to oi was

far in the past, then it is very likely that the current access is a miss.
▶ Formalization: If this is the first access to oi or we have seen at

least d distinct data items since the last access to oi, then we
assume a cache miss.

Σ = ⟨o1, o2, o1, o4, o5, o3, o3, o1, o2⟩

d = 3

e1 = ⟨o1⟩ e2 = ⟨o1, o2⟩ e3 = ⟨o1, o2, o1⟩
e4 = ⟨o2, o1, o4⟩ e5 = ⟨o1, o4, o5⟩ e6 = ⟨o4, o5, o3⟩

e7 = ⟨o3, o3⟩ e8 = ⟨o5, o3, o3, o1⟩ e9 = ⟨o3, o1, o2⟩



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Higher-order Access Hypergraphs

▶ Basic Idea: If we are accessing oi and the previous access to oi was
far in the past, then it is very likely that the current access is a miss.

▶ Formalization: If this is the first access to oi or we have seen at
least d distinct data items since the last access to oi, then we
assume a cache miss.

Σ = ⟨o1, o2, o1, o4, o5, o3, o3, o1, o2⟩

d = 3

e1 = ⟨o1⟩ e2 = ⟨o1, o2⟩ e3 = ⟨o1, o2, o1⟩
e4 = ⟨o2, o1, o4⟩ e5 = ⟨o1, o4, o5⟩ e6 = ⟨o4, o5, o3⟩

e7 = ⟨o3, o3⟩ e8 = ⟨o5, o3, o3, o1⟩ e9 = ⟨o3, o1, o2⟩



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Approximation Theorem

Theorem
For any ϵ > 0, by applying the approach above using the sparsified access
hypergraph G̃dϵ

of order dϵ := ⌈t · k + t·k
ϵ ⌉, we obtain a

(1 + ϵ)−approximation of the optimal number of cache misses in a
direct-mapped cache, i.e. Missesk(f̂ ,Σ) ≤ (1 + ϵ) · Missesk(f∗,Σ).
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Graph Coloring

▶ Every edge in our hypergraph starts and ends with the same vertex

e1 = ⟨o1⟩ e2 = ⟨o1, o2⟩ e3 = ⟨o1, o2, o1⟩
e4 = ⟨o2, o1, o4⟩ e5 = ⟨o1, o4, o5⟩ e6 = ⟨o4, o5, o3⟩

e7 = ⟨o3, o3⟩ e8 = ⟨o5, o3, o3, o1⟩ e9 = ⟨o3, o1, o2⟩

▶ A placement map is basically a coloring of our hypergraph with k
colors

▶ An edge corresponds to a cache miss if the color assigned to its
endpoints is reused in its middle, as well.

▶ NP-hard Problem: Find a coloring that minimizes missed edges.
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Graph Coloring

▶ Every edge in our hypergraph starts and ends with the same vertex

e1 = ⟨o1⟩ e2 = ⟨o1, o2⟩ e3 = ⟨o1, o2, o1⟩
e4 = ⟨o2, o1, o4⟩ e5 = ⟨o1, o4, o5⟩ e6 = ⟨o4, o5, o3⟩

e7 = ⟨o3, o3⟩ e8 = ⟨o5, o3, o3, o1⟩ e9 = ⟨o3, o1, o2⟩

▶ A placement map is basically a coloring of our hypergraph with k
colors

▶ An edge corresponds to a cache miss if the color assigned to its
endpoints is reused in its middle, as well.

▶ NP-hard Problem: Find a coloring that minimizes missed edges.
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Treewidth-based Dynamic Programming

▶ We assume our sparsified access graphs have small treewidth
▶ In reality, they do [Chatterjee et al, POPL 2019]

▶ Do a linear-time bottom-up dynamic programming as if you are
coloring a tree

dp[bi, partial coloring c] =

minimum number of missed edges in the subtree of bi
if we color the vertices in bi according to c
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Treewidth-based Dynamic Programming

▶ We assume our sparsified access graphs have small treewidth
▶ In reality, they do [Chatterjee et al, POPL 2019]

▶ Do a linear-time bottom-up dynamic programming as if you are
coloring a tree

dp[bi, partial coloring c] =

minimum number of missed edges in the subtree of bi
if we color the vertices in bi according to c
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Conclusion

▶ CDP is really hard, even when the sequence of accesses is given
apriori

▶ It is not as hard as previously thought since real-world instances are
sparse

▶ The sparsity (tree-likeness) can be exploited to obtain
(1 + ϵ)-approximations for any ϵ > 0

▶ CDP requires both approximation and parameterization (by the
treewidth of access graphs) to become tractable

▶ We provided the first positive theoretical result for CDP but there is
still a long way until it becomes practical

▶ The current algorithm can be used for limit studies and comparison
of heuristics


